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APPENDIX F1:   

 

ADDITIONAL COMMENTS ON SPATIAL POINT PATTERN 

ANALYSIS 

 

____________________________________________________________________________ 

 

1. INTRODUCTION 
 

This appendix supplements the review provided in Appendix F,  in the theory of inter-point 

distance analysis.  It is  focused on mathematical analysis and  does not change the 

conclusions reached in Appendix F in terms of validity of the results.   Two topics are discussed:  

1. Equations 1 to 5 on Page 364 of published article 

2. Confidence interval of a CSR pattern 

The presentation of equations 1 to 5 on page 364  is difficult to follow.   The subheading for this 

section is “Evaluation of the spatial point pattern by modified Ripley’s K-function method.   If we 

skip over these five equations, and read on, it is learned that these equations represent a new 

outgrowth to the method presented by Ward and Ferrandino in reference 15.   Figure 4 might 

look like a Ripley K-function analysis, but  there is no definition for Kexp and K’obs as  

presented in  Figure 4 on page 372.  The y-axis is labeled, K(Di) but no where has variable Di 

been defined.  The only link between Figure 4 to these five equations is the note accompanying 

Figure 4 that “Calculations are described in equations 1 to 5.”  So, it is a confusing presentation.  

The article states this is an extension of  Ward and Ferrandino’s article, but this is incorrect.  

If the discussion is read carefully, the article  states  that the equivalence of this analysis to 

Ripley K-function occurs when there are infinite number of trees uniformly covering the site 

(CSR pattern).    Obviously,  epidemiology problems are unlikely to find “infinite trees” within a 

study site.  

Continuing on with page 364 in the first new paragraph, there certainly an  impression  that  a 

Kolmogorov-Smirnov (K-S) test  was to be conducted between two empirical distribution as 

given in equations 1 and 2.     But mysteriously  no results were presented.  It was obviously a 

good question,  where the empirical distribution formed by all citrus trees (equation 1) is 

statistically different from the one which included only infected trees.    
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So, this supplemental appendix begins by what the equations are not:  (a) an extension of 

Ripley K-function and (b) procedures used to conduct a K-S test.  

But, were these equations used to define the confidence intervals of the Kexp curve in Figure 4? 

If not, then why are they presented as part of the spatial point procedure.  

2. INTER-POINT DISTANCES, EQUATIONS 1 AND 2 
 

As discussed in Appendix F,  if there are N points, and they are interconnected by lines, this 

results in N(N-1)/2 unique distances.  In equation 1, and empirical cumulative distribution of 

inter-point distances of all trees is created using quantiles.  Thus, distances from infected to 

healthy tree, healthy to healthy tree and infected to infected trees are part of this distribution.  

The random variable, for the discussion here, will be denoted as D.  Thus, equation 1 provides 

estimates for the probability of any randomly selected distance from the collection  of calculated 

distances,  will be less or equal to d  is cdfT (d).   Similarly, equation 2 is the empirical cumulative 

distribution of inter-point distances of  all infected trees, with I(I-1)/2 unique distances.  

To simplify the notation,  the number of distances as calculated from a set of trees will be 

denoted as A if all trees are used and B  if only infected trees are used.   

 

3. EQUATIONS 2 TO 5, PAGE 364 
 

Equation 3 is explained on page 364 of published article as follows : 

For a particular distance (d), the probability of selecting infected pairs in a sample of N(N – 

1)/2 𝑐𝑑𝑓𝑇(𝑑) tree pairs chosen randomly from a population of size N(N – 1)/2 of which I(I – 1)/2 

are infected is given by the hyper- geometric distribution:  ... 

Equation 3 which follows is the hyper-geometric distribution.  The statement is in the form of a 

sampling problem of a discrete variable. The distribution as  given in equation 1 can easily be 

approximately transformed into a discrete variable distribution (probability mass function)  of 

distance d = {1, 2, 3 ... } .   So, the distribution of random variable D, representing discrete inter-

point distances of all trees, is a probability mass function,  P(D = d), which can be expressed as 

P(d).   

As with sampling problems, we have the parent (or collective)  and the sample population. For a 

specified value of d,  𝑁𝑎 ∙ 𝑃(𝑑)  would be the parent number of all tree pairs with distances equal 

to the value d,  as correctly stated in the above excerpt.   

But as we examine the equations 3 and 4,  the cumulative distribution for infected trees as given 

in equation 2 is not included.  It is presumed  that the infected trees are considered to be 

randomly located within the population of all trees.  If the overall  population is considered to be 

a CSR pattern,  the trees randomly assigned as infected, would in theory, have the same 

pattern, hence the distribution related to inter-point distances would be the same.  
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Thus, equations 3- 5 in the published paper  form a sampling problem where:  (1) All trees are 

of a CSR pattern and (2) Infected trees are randomly assigned within this pattern.  As will later 

be reviewed, this analysis seems extraneous to the determination of confidence intervals for the 

Kobs curve in Figure 4.  

The parameters of the  hypergeometric distribution are correctly stated in equation 3 of the 

published article.  It is given below in an expanded form.  

 𝑃{𝑋 = 𝑖}  =  𝑓(𝑖|𝑛, 𝐴, 𝐵)  =  
(𝐵

 𝑖
)(𝐴−𝐵

𝑛−𝑖
)

(𝐴
𝑛

)
  

 

 

Or  P = Hyper(i, A, B, n) 

The parameters are defined as follows: 

n  =   Sample size of distances.   

A  = All distances  calculated from healthy and infected trees  

B  = All distances calculated from infected trees only .  

i  =  Number of distances within the random sample based on infected tree pairs only.   

Sample size is equal to 𝐴 ∙ 𝐹(𝑑)   The cumulative distribution is denoted as F(d) instead of 

𝑐𝑑𝑓𝑇(𝑑) for convenience.      

Distribution mean and variance  are calculated as follows: 

𝜇 =  𝑛 ∙ 𝐵/𝐴 =  𝐵 ∙ 𝐹(𝑑)     

 

𝜎2  =  𝑛 (
𝐵

𝐴
)

(𝐴 − 𝐵)

𝐴

(𝐴 − 𝑛)

𝐴 − 1
 

 

 

Substituting 𝑛 = 𝐴 ∙ 𝐹(d)  and grouping/ canceling like terms: 

 

𝜎2 =
[𝐵𝐴 ∙ 𝑃(𝑑) − 𝐵2 ∙ 𝐹(𝑑)]

(𝐴 − 1)
 (1 − 𝐹(𝑑)) 

 

 

Since 𝜇 =  𝐵 ∙ 𝐹(𝑑),   based on the assumptions as discussed above,  the expression becomes: 
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𝜎2  = 𝐵 ∙ 𝐹(𝑑) [1 −
𝐵

𝐴
] (1 − 𝐹(𝑑)) [

𝐴

(𝐴 − 1)
] 

 

 

For variance, a  slightly different equation is presented in the published article.  The equation 

presented in the article, Equation 4 is: 

 

𝜎𝑒𝑥𝑝
2 =  𝑖𝑒𝑥𝑝

2 [1 − 𝑐𝑑𝑓𝜏(𝑑)] (1 −
𝐼(𝐼 − 1)

𝑁(𝑁 − 1)
) 

 

 

with mean value,   

𝑖𝑒𝑥𝑝 =
𝐼(𝐼 − 1) ∙ 𝑐𝑑𝑓𝑇(𝑑)

2
 

In attempting to reconcile these differences, our equation based on the definition of variance 

with  the notation used in the published article is:    

𝜎2 =  𝑖𝑒𝑥𝑝[1 − 𝑐𝑑𝑓𝑇(𝑑)] (1 −
𝐼(𝐼 − 1)

𝑁(𝑁 − 1)
) (

𝑁(𝑁 − 1)

𝑁(𝑁 − 1) − 1
) 

 

 

The last term is approximately one for large N, yielding:    
 
 

𝜎2 =  𝑖𝑒𝑥𝑝[1 − 𝑐𝑑𝑓𝑇(𝑑)] (1 −
𝐼(𝐼 − 1)

𝑁(𝑁 − 1)
) 

 

 
 
This the exponent of iexp should be 1 and not 2 as given in the published article. This could 
easily be a typographical error. 
 
The authors state the normal distribution can be used to approximate the calculation of the 

hypo-geometric. The conditions for this approximation appear to be satisfied.  

The following example is used to further explain equations 1 to 5 as provided in the published 

article.   
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4. EXAMPLE PROBLEM 
 

A total of 1000 trees are distributed by a CSR process in a square area,   Infected trees are 

randomly assigned with 500 of the trees infected.   A sample of IP distances is taken with the 

size calculated = 𝐴 ∙ 𝐹(𝑑).    Calculate the mass and cumulative probability that the sample 

contains 62237 values calculated only based on infected tree pairs.  The   distribution of F(d) 

could be calculated either analytically or by  simulation but for this problem,  F(d) = 0.50.  

 A = N(N-1)/2  =  1000* 999/2 = 499,500 distances based on all trees 

B = I(I-1)/2  = 500 * 499/2 =  124,500 distances based on infected trees.   

n  = 499,500 * 0.5 = 249,750 distances 

Excel Program used for calculations: 

P{X = 62250} = Hypgeom.dist( 62250, 249750, 124450, 49950, False) = 0.0026 

P{X < 62250} = Hypgeom.dist( 62250, 249750, 124450, 49950, True) = 0.5013 

mean = 124,000 * 0.5 = 62,250  

𝜎2  =  𝑛 (
𝐵

𝐴
)

(𝐴 − 𝐵)

𝐴

(𝐴 − 𝑛)

𝐴 − 1
 

Variance = 23,367 

𝜎2 =  𝑖𝑒𝑥𝑝[1 − 𝑐𝑑𝑓𝑇(𝑑)] (1 −
𝐼(𝐼 − 1)

𝑁(𝑁 − 1)
) 

Variance - 62250 * 0.5 *  (1 - 124500/499500) = 23,367  

Standard deviation = 15286 

Normal approximation: 

P(X = 62250)  = P(X < 62251) - P(X < 62250) =  0.0026 

P(X < 62500)  = 0.50 

 

 

 

  



6 
 

 

5. CONFIDENCE ENVELOPE 
 
 
While equations 1 to 5 are correct, except where noted on the variance equation,  the  authors 

do not explain how either the normal or the hyper-geometric distributions were used to calculate 

the confidence intervals.  This lack of documentation is unfortunate. The only possible means of 

reviewing the confidence limits was by comparing the article’s results with those obtain by   

simulation.  

 A MATLAB routine was used to: (a) generate 71 independent and  random points in a 3.0 x 1.2 

km area,   (2) calculate IP distances for n points and (3)  rank these distances from lowest to 

highest  and  (4) assign probabilities based on quartiles, so a full set of probabilities ranging 

from p1 to p99 is calculated.  A series of 100 realizations were performed, and for each 

probability, ranging from 0.10 to 0.99,  probability limits of  0.05 and 0.95 were calculated based 

on quartiles.    

The simulation area and number of points were chosen for comparison with the published 

article, Figure 4.   In Table 1 of the published article, time period 4 has 40 previously infected 

trees and 31 newly infected trees for a total of 71 infected  trees.  The area dimensions of 3 x 

1.2 km were used because these dimensions fit the expected curve in Figure 4.  

 

Figure 1:  Simulation Results with  Mean, Lower Limit and Upper Limit Curves 
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Figure 2: Diagram from Published Article, showing Kexp Curve 

 
Confidence interval is shown as +𝜎 or -𝜎.  

COMPARISON  OF  FIGURE 4 OF THE PUBLISHED ARTICLE WITH SIMULATION 
 

Examining both Figure 1 and 2, it is apparent that the simulated results show a tighter bounds at 

the lower end of the curve  and a wide bounds at the upper end, while Figure 4 in the article 

shows more uniform bounds. The comparison of results at selected probability values  is shown 

in Tables 1 and 2.  

 

Table 1:  Lower Limit  Curve Comparison of distances  (km) 

 
Probability Level 

Lower Limit distance (km)  
from article, Fig 4 

Lower Limit distance 
(km)  simulation 

% Difference 

P = 0.10 (P10) 0.317 0.374. 15.2 

P = 0.50 (P50) 0.991 0.964 (2.8) 

P = 0.90 (P90) 2.008 1.912 (10.8) 
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% Difference =  (Article distance - Simulation distance)/  Article distance.  Article distances were 

obtain by digitizing the graph.  

Table 2:  Upper limit curve comparison of Distances 

 

 
Probability Level 

Upper Limit distance (km)  
from article, Fig 4 

Upper Limit distance 
(km)  simulation 

% Difference 

P = 0.10 (P10) 0.415 0.401 (3.5) 

P = 0.50 (P50) 1.127 1.111 (1.4) 

P = 0.90 (P90) 2.209 2.297 3.8 

 

 

6. CONCLUSIONS 
 

1.  Equations 1 - 5 were reviewed in detail.   There is a minor error in the variance calculation.  .     

2.  Appendix F concluded the expected curve was based on simulation of inter-point distances 

of a CSR pattern.  Similarly, it is considered possible that the confidence intervals (probability 

limits) are based on simulation.  There is insufficient theoretical detail to know the manner of 

calculation.   

3.   In this review, confidence intervals were generated using simulation.  When  Figure 4 

confidence intervals were compared with simulated results, there were significant differences in 

the shape of the curves.  This was most apparent in the lower end of the distribution (P10)  with 

the lower bound with 15.2% difference in distance.     
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Matlab Program Listing 

 % 
%  Program to calculate CI for IP distances in a  
%  CRS Pattern  
% 
%  nt = number of points,  
%  ni = number of iterations 
%  xsize, ysize = x and y coodinates 
%    
% 
clear; 
ni = 4000; 
nt= 71; 
xsize = 3; ysize = 1.2; 
for niter= 1:ni; 
    x = rand(1,nt)*3; 
    y = rand(1,nt)*1.2; 
    k = 1; 
    for i = 1:nt; 
        for j = 1:nt; 
            if i > j;   
                d(k) = ((x(i)-x(j))^2+(y(i)-y(j))^2)^0.5; 
                k = k + 1; 
            end; 
        end; 
    end; 
    d = sort(d); 
     ncount = size(d,2); 
     p = 1:1:ncount; 
     p = p/ncount; 
     px = 0.01:.01:.99; 
     kk  = ceil(px*ncount); 
     % data we use to form confidence intervals 
     cdata(niter,1:99) = d(kk); 
    end; 
    cdata = sort(cdata); 
    ilower = ceil(niter*0.05); 
   iupper = ceil(niter*0.95); 
   xmean = mean(cdata) 
   clower(1:99) = cdata(ilower,1:99); 
   cupper (1:99) = cdata(iupper,1:99); 
   clower (100) = sqrt(xsize^2+ysize^2); cupper(100) = clower(100); 
   xmean(100) = cupper(100) 
   px(100) = 1; 
    plot(cupper,px, clower,px, xmean,px); 
    % comparison to gottwald's work 
    delta = cupper-clower; 
    err1 = delta(10)-0.096 
    err2 = delta(50) - 0.151 
    err3 = delta(90) - 0.237 
    pct_err1 = err1/delta(10)*100 
    pct_err2 = err2/delta(50)*100 
    pct_err3 = err3/delta(90)*100 


